Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(9): 5003-5013, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38408326

RESUMO

Enabling the detection of organophosphate pesticide (OP) residues through enzyme inhibition-based technology is crucial for ensuring food safety and human health. However, the use of acetylcholinesterase, the primary target enzyme for OPs, isolated from animals in practical production poses challenges in terms of sensitivity and batch stability. To address this issue, we identified a highly sensitive and reproducible biorecognition element, TrxA-PvCarE1, derived from red kidney beans and successfully overexpressed it in Escherichia coli. The resulting recombinant TrxA-PvCarE1 exhibited remarkable sensitivity toward 10 OPs, surpassing that of commercial acetylcholinesterase. Additionally, this approach demonstrated the capability to simultaneously detect copper compounds with high sensitivity, expanding the range of pesticides detectable using the traditional enzyme inhibition method. Spiking recovery tests conducted on cowpea and carrot samples verified the suitability of the TrxA-PvCarE1-based technique for real-life sample analysis. In summary, this study highlights a promising comprehensive candidate for the rapid detection of pesticide residues.


Assuntos
Técnicas Biossensoriais , Inseticidas , Resíduos de Praguicidas , Praguicidas , Animais , Humanos , Acetilcolinesterase/química , Cobre/análise , Compostos Organofosforados/química , Praguicidas/química , Inseticidas/análise , Resíduos de Praguicidas/análise , Organofosfatos/análise , Técnicas Biossensoriais/métodos
2.
Food Chem ; 416: 135822, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36893638

RESUMO

Herein, we developed a method coupling TLC and enzyme inhibition principles to rapidly detect OPs (dichlorvos, paraoxon and parathion). After the removal of the organic solvent from the samples using TLC and paper-based chips, the enzyme was added to the detection system. The results showed that the current method effectively reduced the effects of solvents on enzyme behavior. Moreover, the pigments could be successfully retained on TLC with 40% ddH2O/ACN solution (v/v) as a developing solvent. Additionally, the detection limits (LODs) were 0.002 µg/mL for dichlorvos, 0.006 µg/mL for paraoxon, and 0.003 µg/mL for parathion. Finally, the method was applied to spiked cabbage, cucumber, and spinach and showed good average recoveries ranging between 70.22% and 119.79%. These results showed that this paper-based chip had high sensitivity, precleaning, and elimination of organic solvent properties. Furthermore, it provides a valuable idea for sample pretreatment and rapid determination of pesticide residues in food.


Assuntos
Paration , Resíduos de Praguicidas , Praguicidas , Praguicidas/análise , Diclorvós/análise , Cromatografia em Camada Delgada , Paraoxon/análise , Resíduos de Praguicidas/análise , Paration/análise , Solventes
3.
Polymers (Basel) ; 15(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36616536

RESUMO

Environmental chemical contaminants in food seriously impact human health and food safety. Successful detection methods can effectively monitor the potential risk of emerging chemical contaminants. Among them, molecularly imprinted polymers (MIPs) based on electrochemical biomimetic sensors overcome many drawbacks of conventional detection methods and offer opportunities to detect contaminants with simple equipment in an efficient, sensitive, and low-cost manner. We searched eligible papers through the Web of Science (2000-2022) and PubMed databases. Then, we introduced the sensing mechanism of MIPs, outlined the sample preparation methods, and summarized the MIP characterization and performance. The classification of electrochemistry, as well as its advantages and disadvantages, are also discussed. Furthermore, the representative application of MIP-based electrochemical biomimetic sensors for detecting small molecular chemical contaminants, such as antibiotics, pesticides, toxins, food additives, illegal additions, organic pollutants, and heavy metal ions in food, is demonstrated. Finally, the conclusions and future perspectives are summarized and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...